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Abstract    
In India, the mine area and the processing plant of 

materials such as iron ore and coal will cause dust 

emissions. The fugitive dust emission creates a 

hazardous working environment for the workers. Dust 

emissions will cause pulmonary-related diseases to the 

workers and also to the people living in nearby areas 

of the mine. Environmental effects such as air pollution 

occur due to the dispersion of particulate matter over 

the permissible limit in the processing area. This study 

evaluates dust emission levels and air quality control 

measures in an iron ore mine (A), Karnataka, India. 

Fugitive and workplace dust sampling was conducted 

following DGMS and MoEF and CC guidelines, with a 

specific focus on PM10 and PM2.5 particulate matter. 

Measurements revealed that dust concentrations in 

several mining areas exceeded the permissible limit of 

1200 μg/m³ as per the National Ambient Air Quality 

Standards (NAAQS, 2009).  

 

To analyze and predict these concentrations, 

supervised machine learning (regression) modeling 

including linear, polynomial (order 2) and polynomial 

(order 2) models, was applied. The results indicated 

that a third-order polynomial regression model 

provided the best fit for predicting dust concentrations, 

demonstrating lower error. The study emphasizes the 

necessity of more robust dust suppression measures 

including installing a dry fog dust suppression system, 

to guarantee safe working conditions and adherence to 

environmental regulations, even in the face of efforts to 

reduce dust exposure. 
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Introduction 
In India, the mine area and the processing plant of materials 

such as iron ore and coal will cause dust emissions. Iron is 

the fourth most abundant material in earth's crust which 

occurs in sedimentary rocks. It is formed by chemical 

reactions that combine iron and oxygen in both marine and 

fresh waters and is transformed into metallic form. In India, 

iron is one of the most mined elements among the metals 

accounting for around 6% of the world's total iron 

production. Most of the iron ore mines exist in forest zones. 

The activities to extract iron ore include blasting, excavation, 

loading, dumping, crushing, screening and transportation 

which emit air pollutants into the environment. Air 

pollutants resulting from anthropogenic activities affect both 

biotic and abiotic components of the ecosystem11.  

 

According to environmental air quality terminology, fugitive 

dust is the very fine particulate matter (PM) suspended in the 

air, mainly from the earth's soil. It majorly excludes 

particulate matter from other typical sources like automobile 

exhaust. The minerals found in soil, such as calcium, iron, 

silicon oxides and aluminium, make up the majority of 

fugitive dust particles. Approximately 50% of fugitive dust 

particles have a diameter greater than 10 μm and settle faster 

than the smaller ones12. When there is not enough moisture 

in the ground to hold the soil particles together, fugitive dust 

forms. This dust then spreads to the above-ground level. 

After that, particulate matter reaches the atmosphere as a 

result of wind, moving cars and other activities.  

 

Both natural and artificial soil surfaces are vulnerable to 

fugitive dust emissions. Inhaling particulate matter (PM) can 

lead to respiratory infections, chronic lung damage and in 

rare cases, early death. PM typically enters the respiratory 

tract and then the lungs. Particles of ≤2.5 μm (PM2.5) are 

the worst; PM with diameters of ≤10 μm (PM10) can pose 

health risks to humans6. Dust emission in mining operations, 

particularly in iron ore mines, is a significant environmental 

and occupational hazard. The mining activities such as 

drilling, blasting, crushing and transportation of materials 

generate large quantities of particulate matter (PM), which 

can adversely affect air quality and pose health risks to 

workers and nearby communities. The control of dust 

emissions is critical for maintaining environmental 

standards and ensuring worker safety14. 

 

The inhalation of fine particulate matter, particularly PM10 

and PM2.5, is associated with a range of respiratory and 

cardiovascular diseases. A direct correlation between high 

levels of PM exposure in mining environments and increased 

incidences of pulmonary diseases among workers 

emphasized that prolonged exposure to respirable dust in 

mines can lead to chronic obstructive pulmonary disease 

(COPD) and silicosis, particularly in environments with 

elevated free silica content2. 

 

The regulation of dust emissions in mines is governed by 

various national and international standards. It provides 

specific guidelines for permissible exposure limits in Indian 

mines, while the Ministry of Environment, Forests and 
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Climate Change (MoEF and CC) mandates compliance with 

National Ambient Air Quality Standards (NAAQS). The 

importance of adhering to these regulations is to minimize 

environmental and health impacts in mining regions16. 

 

Technological advancements have introduced several dust 

suppression techniques including water spraying, chemical 

dust suppressants and dry fog systems. The dry fog dust 

suppression systems are particularly effective in reducing 

airborne dust levels in iron ore mines. These systems 

generate fine water droplets that capture dust particles, 

preventing them from becoming airborne and further 

supported the effectiveness of such systems in meeting the 

NAAQS requirements in heavy-duty mining operations5,17. 

Statistical regression models are widely used for analyzing 

environmental data and predicting air quality trends. The 

regression models provide the prediction of PM 

concentrations, providing insights into the factors 

influencing dust levels. Extend this approach by 

incorporating polynomial regression models to capture non-

linear relationships in environmental data, offering a more 

nuanced understanding of dust emission patterns3. 

 

Several case studies have documented the application of 

statistical models in evaluating dust emissions in iron ore 

mines. A comprehensive study on dust generation in an 

Indian iron ore mine was carried out using regression 

analysis to identify key predictors of PM10 and PM2.5 

levels. Their findings underscored the significance of 

controlling dust at source points such as crushers and 

screening plants1. The integration of machine learning 

techniques with traditional statistical models has shown 

promise in improving the accuracy of air quality predictions. 

The machine learning algorithms could enhance the 

predictive power of regression models by accounting for 

complex interactions between variables. In the context of 

mining, such models could be used to develop proactive dust 

management strategies8.  

 

Implementing dust control measures in mining operations 

has both environmental and economic implications. The 

cost-effectiveness of various dust suppression techniques, 

finding that while initial investments in advanced systems 

like dry fogging are high, the long-term benefits in terms of 

reduced health costs and regulatory compliance outweigh 

these expenses. Effective dust control could enhance the 

operational efficiency of mining activities by reducing 

equipment downtime due to dust-related wear and tear7. 

 

Modeling dust emissions in mining environments present 

several challenges including the variability in mining 

activities, weather conditions and the heterogeneity of the 

particulate matter itself. The limitations of linear regression 

models in capturing these complexities suggest the need for 

more sophisticated modeling approaches that incorporate 
real-time data and adaptive algorithms4. Recent 

advancements in air quality monitoring technologies have 

enabled more accurate and real-time data collection in 

mining environments. The role of portable air quality 

monitors and remote sensing technologies is to improve the 

spatial and temporal resolution of dust measurements. These 

advancements support the development of more precise and 

dynamic regression models for predicting air quality13. 

 

Seasonal variations can significantly impact dust emissions 

and dispersion patterns in mining areas. The dust 

concentrations in Indian iron ore mines were notably higher 

during the dry season, necessitating season-specific dust 

control strategies. Nykanen et al10 recommended adjusting 

the parameters of regression models to account for these 

seasonal effects to improve predictive accuracy. Worker 

training is critical in mitigating the health risks associated 

with dust exposure in mining environments. There is a need 

for regular training programs to educate workers on the use 

of personal protective equipment (PPE) and best practices in 

dust management. Proper training ensures that dust control 

measures are effectively implemented at the ground level, 

reducing the incidence of occupational diseases9.  

 

The presence of free silica in mining dust is a significant 

health concern due to its association with silicosis. An 

assessment of free silica content in Indian iron ore mines 

found that concentrations often exceeded safe levels, 

particularly in high-dust areas such as crushers and conveyor 

belts. The study called for enhanced dust control measures 

and regular monitoring of silica levels to protect workers' 

health15. 

 

The findings from studies on dust emissions and air quality 

control have important policy implications. There should be 

stricter enforcement of existing regulations and the 

introduction of new policies that mandate the use of 

advanced dust suppression technologies in mining 

operations. Future research should focus on developing 

integrated dust management systems that combine real-time 

monitoring, predictive modeling and automated control 

measures. This work focuses on the evaluation of dust 

emission. Air quality control in iron ore mines is crucial for 

ensuring environmental compliance and protecting worker 

health. The application of statistical regression modeling, 

particularly polynomial regression, will be used to find 

valuable insights into the factors influencing dust levels and 

the effectiveness of control measures. 

 

Site Description 
An iron ore mine A is located in the Bellary district of 

Karnataka State, having 15°2ʹ00″ and 15°86ʹ30″ N latitude 

and 76°36ʹ00″ and 76°38ʹ30″ E longitude (Toposheet No. 

57A/12 of Survey of India) (Fig. 1). Sampling and 

monitoring locations of fugitive dust were decided after 

detailed discussion and consensus with Officials of Mines in 

predominant downwind directions at a distance of 25±2m 

from the dust-generating source in crushing and screening 

plants before installation of the dust suppression system.  

The monitoring was carried out at nine locations, located at 

View Point, Plant Bottom, Control Room, Weigh Bridge, 



     Disaster Advances                                                                                                                            Vol. 18 (5) May (2025) 

https://doi.org/10.25303/185da57070        59 

Weigh Bridge (Dispatch), Screening Plant, Crushing Plant 

(Top) and Mining Field Office. Fig. 1a depicts the exact 

location of the sampling/monitoring sites. Fig 1b. shows 

wind and temperature data for the sampling period. The 

predominant wind direction was from NE to SW. 

 

Workplace sampling for air particulate matter 

(PM2.5/PM10) was carried out at the crushing plant and 

screening plant inside the shed for three sites each. Ambient 

particulate matter sampling (PM2.5/PM10) was done at six 

locations outside the lease boundary. Further, workplace 

sampling for air particulate matters was carried out for 

different categories of work personnel for both shifts at 

different locations inside and outside of the mine lease 

boundary. Fig. 2 shows the view of the working face of the 

crusher plant of mine A. 

 

 
Fig. 1a: Location map of the study area 

 

 
Fig. 1b: Wind and temperature data for the sampling period 

Fig. 1: Site description  
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Fig. 2: View of the working face of the Crusher plant of Mine A 

 

  
Fig. 3: Dust sampling using a respirable dust sampler (Ecotech AAS 190) (PM10) and Particulate dust sampler 

(Ecotech AAS127) (PM2.5) 

 

Material and Methods 
Sampling and Analysis of Dust: Sampling for fugitive dust 

monitoring was carried out using a Respirable Dust Sampler 

(RDS) (Ecotech AAS 190) and a Particulate Sampler 

(Ecotech AAS127) (Fig. 3). The Glass Microfibre filter 

paper (8×10”) was oven-dried for 24 h and weighed initially 

(W1) before sampling. The filter paper was placed safely by 

unscrewing the plug on the filter assembly. The timer was 

set for 8 h (for each shift) and the flow rate was adjusted at 

1.1 m3/min. The weight of the dust collected in the cup under 

cyclone of RDS was added to the weight difference of 

Whatmann filter paper for the calculation of total suspended 

particulate matter. Particulate and fine particulate 

(PM10/PM2.5) sampling was done at a constant flow rate of 

1 m3/h (16.7 litres per minute) with Omni-directional air 

inlet with PM10 separation by an impactor followed by 

PM2.5 separation through a 47 mm WINS impactor. A 

cyclone sampler, which separates the respirable fraction of 

the particle (about 10 μm and below) from the ambient air 

drawn through it, was utilized for respirable dust. Larger 

undesirable particles fall into the grit pot while tiny particles 

are transported onto the filter paper within the cassette by the 

design of the cyclone sampler. The cyclone version is not 

weighed as a unit, in contrast to the Institute of Occupational 

Medicine (IOM) Sampler cassette/filter paper combo.  

 

Pre- and post-samplings just weigh the filter paper. For 

optimal functioning, this instrument is kept at a flow rate of 

2.2 liters per minute. For optimal functioning, this 

instrument is kept at a flow rate of 2.2 liters per minute.  

 

Particulate matter was analyzed using standard techniques in 

accordance with MoEF and CC norms. Field-collected 

samples were transported to the lab in a plastic zipper and 

placed in a desiccator for a whole day. An electronic balance 

with four-digit precision was used to determine the initial 
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weight (W1) and final weight (W2) of the filter paper. 

Equation 1 is used to determine the dust concentration:  

 

Dust concentration =  
W2−W1

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑖𝑟 𝑝𝑎𝑠𝑠𝑒𝑑
                         (1) 

 

Regression modeling and residual analysis of Dust 
emission: The present work majorly determines the PM10 

and PM2.5 dust emission in the iron ore plant. After 

obtaining the dust emission, the supervised machine learning 

technique i.e. regression modeling was carried out using 

linear, polynomial (order 2) and polynomial (order 3) on the 

results of dust emission. The present work will provide the 

most suitable regression modeling technique for predicting 

the dust emission of PM10 and PM2.5. After obtaining the 

accurate regression model, the residual analysis using a 

probability plot was carried out to check the error condition 

for validating the developed regression model.  

 

The present study aims at testing the (Particulate Matter) 

PM10 and PM2.5 in the mine area, processing plant area and 

nearby residence area of iron ore mine A using respirable 

dust sampler (RDS) (Ecotech AAS 190). The statistical 

regression modeling was carried out on the experimental 

results using linear, polynomial (order 2) and polynomial 

(order 3) regression models. Furthermore, the statistical 

modeling results were validated using residual analysis 

using a probability plot. 

 

Results and Discussion 
Experimental and Statistical studies of PM2.5 dust 

emission in Plant location and Mining location: Table 1 

shows experimental results of PM2.5 dust emission in plant 

and mining locations. From table 1, it is clear that the 

screening plant has the highest PM2.5 dust emission in the 

first shift and second shift when compared to other plant 

locations. The process of screening involves the separation 

of fine and coarse particles which causes high material 

movement for stratification and separation. Because of this 

process, PM2.5 dust emission is higher for the screening area 

compared to other plant locations.   

 

Table 1 

Experimental results of PM2.5 dust emission in plant location and mining location 

Plant Location Mining Location 

S.N. Location name  (Shift) 

Dust 

Concentration 

μgm/m3 

S.N. 
Location name  

(Shift) 

Dust 

Concentration 

μgm/m3 

1 CP3 Plant 2 1259.26 1 
Weigh Bridge 2 

(Dispatch) 
6423.68 

2 CP3 Plant 1 1378.88 2 
Weigh Bridge 

1(Dispatch) 
8545.23 

3 Weigh Bridge 2 1455.91 3 Control Room 2 10662.44 

4 Weigh Bridge 1 1623.25 4 Control Room 1 12598.26 

5 Crushing Plant 2 2654.22 5 View Point 2 14270.01 

6 Crushing Plant 1 2840.39 6 View Point 1 15987.14 

7 Screening Plant 2 3567.98 7 Mining Field Office 2 16587.96 

8 Screening Plant 1 3710.74 8 Mining Field Office 1 18269.01 

*1 and 2 specify the first and second shifts respectively. 

 

 
Fig. 4(a) 
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Fig. 4(b) 

 
Fig. 4(c) 

Fig. 4: Statistical results of PM2.5 dust emission in Plant location using (a) Linear, (b) Polynomial (order 2)  

and (c) Polynomial (order 3) models 

 

From Table 1, it was also clear that the mining field office 

area has the highest PM2.5 dust emission when compared to 

other mining areas. This was majorly due to vehicle 

movement inside and outside the mine for the transportation 

of material. This causes high material dispersion in the 

environment causing the highest PM2.5 dust emission. From 

table 1, it was also clear that the PM2.5 dust emission in the 

plant location of screening and crushing area was higher than 

the permissible limit of 1200 μg/m3 as per the National 

Ambient Air Quality Standard, 2009. From table 1, it was 

also clear that the PM2.5 dust emission in all mining 

locations was higher than the permissible limit of 1200 

μg/m3 as per the National Ambient Air Quality Standard, 

2009. 

Fig. 4 shows the statistical results of PM2.5 dust emission in 

plant locations using (a) Linear, (b) Polynomial (order 2) and 

(c) Polynomial (order 3). From fig. 4, it was clear that the R2 

value of PM2.5 dust emission in the plant location was 

92.7%, 95.2% and 97.5% respectively for Linear, 

polynomial (order 2) and polynomial (order 3) models. This 

shows that the polynomial (order 3) models have the highest 

closeness with the experimental results of PM2.5 dust 

emission in the plant location.  

 

Figure 5 shows the probability plot of the regression model 

of PM2.5 dust emission in plant locations. After obtaining 

the accurate regression model for the experimental results of 

PM2.5 dust emission in plant location, the model was 
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validated using the probability plot as shown in figure 5. 

From figure 5, It was clear that the mean error of the 

polynomial model (Order 3) and standard deviation were 

lesser when compared to other models. This shows that the 

polynomial model (Order 3) is the most suitable 

mathematical model for predicting the experimental results 

of PM2.5 obtained for plant location. 

 

Fig. 6 shows the statistical results of PM2.5 dust emission in 

mine location using (a) Linear, (b) Polynomial (order 2) and 

(c) Polynomial (order 3). From fig. 6, it was clear that the R2 

value of PM2.5 dust emission in mine location was 98.9%, 

99.8% and 99.8% respectively for linear, polynomial (order 

2) and polynomial (order 3) models. Fig. 4 also shows that 

the polynomial (order 3) models have the highest closeness 

with the experimental results of PM2.5 dust emission in the 

mine location. This shows that the polynomial (order 3) 

model is the most suitable model for predicting PM2.5 dust 

emission in plant and mine locations. 

 

Fig. 7 shows the probability plot of the regression model of 

PM2.5 dust emission in the mine location. After obtaining 

the accurate regression model for the experimental results of 

PM2.5 dust emission in the mine location, the model was 

validated using the probability plot as shown in fig. 7. From 

fig. 7, it was clear that the mean error of the polynomial 

(Order 3) model and standard deviation were less when 

compared to other models. This shows that the polynomial 

(Order 3) model is the most suitable mathematical model for 

predicting the experimental results of PM2.5 obtained for 

mine location. 

 

 
Fig. 5: Probability plot of the regression model of PM2.5 dust emission in Plant location 

 

 
Fig. 6(a) 
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Fig. 6(b) 

 

 
Fig. 6(c) 

Fig. 6: Statistical results of PM2.5 dust emission in the Mine location using (a) Linear, (b) Polynomial (order 2)  

and (c) Polynomial (order 3) 

 

Table 2 

Experimental results of PM10 dust emission in plant location and mining location 

Plant Location Mining Location 

S.N. Location name (Shift) 

Dust 

concentration 

μgm/m3 

S.N. Location name (Shift) 

Dust 

concentration 

μgm/m3 

1 CP3 Plant 2 553.95 1 Weigh Bridge 2 (Dispatch) 1389.14 

2 CP3 Plant 1 528.78 2 Weigh Bridge 1(Dispatch) 1331.58 

3 Weigh Bridge 2 710.53 3 Control Room 2 1433.31 

4 Weigh Bridge 1 780.26 4 Control Room 1 1440.65 

5 Crushing Plant 2 840.51 5 View Point 2 1471.86 

6 Crushing Plant 1 926.32 6 View Point 1 1624.98 

7 Screening Plant 2 1167.89 7 Mining Field Office 2 2065.59 

8 Screening Plant 1 1254.77 8 Mining Field Office 1 2296.48 
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Experimental and Statistical studies of PM10 dust 

emission in Plant location and Mining location: Table 2 

shows experimental results of PM10 dust emission in plant 

and mining locations. From table 1, it is clear that the 

screening plant has the highest PM10 dust emission in the 

first shift and second shift when compared to other plant 

locations. This was majorly due to the higher particle 

movement which caused coarse-sized dust particles emitted 

from the machine. So, PM10 dust emission is higher for the 

screening area compared to other plant locations.   

 

From table 2, it was also clear that the mining field office 

area has the highest PM10 dust emission when compared to 

other mining. This was majorly due to the higher movement 

of transportation vehicles which caused the dust particles 

from the ground to be dispersed in the environment causing 

the highest PM10 dust emission. From table 1, it was also 

clear that the PM10 dust emission in the plant location of the 

screening area (shift 1) was higher than the permissible limit 

of 1200 μg/m3 as per the National Ambient Air Quality 

Standard, 2009. From table 1, it was also clear that the PM10 

dust emission in all mining locations was higher than the 

permissible limit of 1200 μg/m3 as per the National Ambient 

Air Quality Standard, 2009. 

 

Fig. 8 shows the statistical results of PM10 dust emission in 

plant locations using (a) Linear, (b) Polynomial (order 2) and 

(c) Polynomial (order 3). From fig. 8, it was clear that the R2 

value of PM2.5 dust emission in mine location was 95.1%, 

97.3% and 97.3% respectively for Linear, Polynomial (order 

2) and Polynomial (order 3) models. 

 

 
Fig. 7: Probability plot of Polynomial (order 3) model of PM2.5 dust emission in Mine location 

 

 
Fig. 8(a) 
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Fig. 8(b) 

 

 
Fig. 8(c) 

Fig. 8: Statistical results of PM10 dust emission in Plant location using (a) Linear, (b) Polynomial (order 2)  

and (c) Polynomial (order 3) 

 

Fig. 8 also shows that the polynomial (order 3) models have 

the highest closeness with the experimental results of PM2.5 

dust emission in the mine location. This shows that the 

polynomial (order 3) model is the most suitable model for 

predicting PM2.5 dust emission in plant and mine locations. 

Fig. 9 shows the probability plot of the regression model of 

PM10 dust emission in plant locations. After obtaining the 

accurate regression model for the experimental results of 

PM10 dust emission in plant location, the model was 

validated using the probability plot as shown in fig. 9. From 

fig. 9, it was clear that the mean error of the polynomial 

model (Order 3) was lesser when compared to other models. 

The standard deviation which shows the spread of overall 

error was lesser for the polynomial (Order 3) model. This 

shows that the polynomial model (Order 3) is the most 

suitable mathematical model for predicting the experimental 

results of PM10 obtained for plant location. 

 

Fig. 10 shows the statistical results of PM10 dust emission 

in mine location using (a) Linear, (b) Polynomial (order 2) 

and (c) Polynomial (order 3). From fig. 10, it was clear that 

the R2 value of PM2.5 dust emission in mine location was 

76.4%, 96.5% and 97.2% respectively for Linear, 

Polynomial (order 2) and Polynomial (order 3) models. Fig. 

10 also shows that the Polynomial (order 3) models have the 

highest closeness with the experimental results of PM2.5 
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dust emission in the mine location. This shows that the 

polynomial (order 3) model is the most suitable model for 

predicting PM2.5 dust emission in the plant and mine 

locations. 

 

Fig. 11 shows the probability plot of the regression model of 

PM10 dust emission in the mine location. After obtaining the 

accurate regression model for the experimental results of 

PM10 dust emission in the mine location, the model was 

validated using the probability plot as shown in fig. 11. From 

fig. 11, it was clear that the mean error of the polynomial 

model (Order 3) was lesser when compared to other models. 

This shows that the polynomial model (Order 3) is the most 

suitable mathematical model for predicting the experimental 

results of PM10 obtained for mine location. 

From the results, it was clear that the polynomial (Order 3) 

regression model was best suitable prediction model for 

predicting PM2.5 and PM10 dust emission. Further, the 

validation results showed the spread of error and mean error 

were less for the polynomial (Order 3) regression model. The 

R2 value of more than 97% shows the highest effectiveness 

of the developed mathematical model with test results.  

 

Further, the experimental results show that PM2.5 and PM10 

dust emission for some parts of the plant area and all parts of 

the mining area were higher than the permissible limit of 

1200 μg/m3 as per the National Ambient Air Quality 

Standard, 2009. So, precautionary measures need to be taken 

to prevent higher dust emissions. 

 

 
Fig. 9: Probability plot of Polynomial (order 3) model of PM10 dust emission in Plant location 

 

 
Fig. 10(a) 
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Fig. 10(b) 

 

 
Fig. 10(c) 

Fig 10: Statistical results of PM10 dust emission in the Mine location using (a) Linear, (b) Polynomial (order 2)  

and (c) Polynomial (order 3) 

 

Conclusion 
The present work aims at testing the Particulate Matter 

PM10 and PM2.5 in the mine area, processing plant area and 

nearby residence area of iron ore mine A using respirable 

dust sampler (RDS) (Ecotech AAS 190). The statistical 

regression modeling was carried out using linear, 

polynomial (order 2) and polynomial (order 3) regression 

models. Furthermore, the statistical modeling results will be 

subjected to residual analysis using a probability plot. The 

mean error will be studied for each regression model. The 

results showed that in some of the areas, the dust suppression 

was over the permissible limit.  

The results also showed that the PM2.5 near the minefield 

office was around 18269.01μg/m3 (first shift) and 16587.96 

μg/m3 (Second shift). The results also showed that the PM10 

near the weigh bridge control room was around 2065.59 

μg/m3 (first shift) and 2296.48 μg/m3 (Second shift). The 

results of PM10 and PM2.5 are beyond the permissible limit 

of 1200 μg/m3. The regression results also showed that the 

polynomial regression model of order 3 is the most suitable 

mathematical model for the experimental results of PM10 

and PM2.5 obtained from the particulate sampler (Ecotech 

AAS127). 
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Fig. 11: Probability plot of Polynomial (order 3) model of PM10 dust emission in Mine location 

 

Furthermore, the residual analysis using a normal 

probability plot showed that the polynomial model (Order 3) 

has less error. This shows that the polynomial model (Order 

3) is the most suitable mathematical model for predicting the 

experimental results of PM10 and PM2.5 obtained from the 

respective sampler. 
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